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Two new approaches for investigating critical fluctuations near an in- 
stability point of unstable chemical models are proposed. The master 
equation approach is used. For a homogeneous system without the effect 
of diffusion, three single-component chemical systems exhibiting critical 
behavior are considered. The cumulant functions are expanded in a small 
parameter--the inverse size of the system--and singular perturbation solu- 
tions of the master equation are developed. Exponents describing the 
divergence of the second-order variance are found to be classical. For a 
system including diffusion effects, spatial correlations for a quasi-one- 
dimensional case are investigated by considering scale transformation 
behavior within the multivariate master equation formalism. 

KEY WORDS: Chemical reactions; fluctuations; instabilities; master 
equation; renormalization group; singular perturbations. 

1. I N T R O D U C T I O N  

The existence o f  instabil i t ies  leading to large-scale order  in nonl inear  systems 
dr iven away  f rom the rmodynamic  equi l ibr ium is well-established.  (x,2> A 
par t i cu la r ly  fascinat ing aspect  of  these phenomena  is their  re la t ion to phase  
t ransi t ions.  This  quest ion has recent ly a t t rac ted  considerable  interest ,  bo th  
for  fluid dynamica l  (1~ and for  chemical  instabil i t ies.  (a-6> A m o n g  the most  
impor t an t  results o f  these invest igat ions,  one may  quote  the deve lopment  o f  
long-range spat ial  corre la t ions  o f  the f luctuat ions as the system approaches  
the ins tabi l i ty  po in t  f rom below, and  a concomi t an t  enhancement  o f  local  
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values of the variances. An analysis (4) involving approximations equivalent 
to mean-field theory reveals that the correlation length diverges as (h - At) -1/2 
and variances of fluctuations of the variables diverge as (h - At)-1; h - A~ 
is the distance from the instability point in terms of a bifurcation parameter h. 
The critical exponents are analogous to the "classical" critical exponents in 
equilibrium phase transitions. Such classical exponent results have been 
obtained from several different starting points based on stochastic equations 
for chemical instabilities; e.g. the Langevin method, (3~ the master equation 
approach, (~,5) and the fluctuation-dissipation hypothesis, (7) which are not 
necessarily equivalent. 

Most theories of fluctuations are based on an approximate truncation of 
stochastic hierarchy equations. It is fair to say that, to date, there exists no 
systematic method of analysis of fluctuations in nonequilibrium systems in 
the "critical region" close to the instability point, where existing truncation 
techniques are certainly not justified. The purpose of the present work is to 
point out a few possibilities in this field, for the particular problem of chemical 
instabilities. The basic questions that will retain our attention involve the 
possible breakdown of the "mean-field" theoretical description and the 
development of new methods enabling study of the stochastic equations 
beyond the hitherto used truncation to second-order cumulants. 

In Section 2, we discuss a general formulation of the "mean-field" 
theory in the master equation description of fluctuations for a homogeneous 
system (well-stirred system); attention is focused on the variance of a fluctu- 
ating variable near the critical point. Several simple models are used for 
illustrations. Deviations from "mean-field" theory are analyzed in Section 3 
by using a singular perturbation approach to treat the terms neglected in the 
"mean-field" method. It is shown that the divergence of the variances and 
the values of critical exponents will remain "classical" when higher order 
nonlinear fluctuations are considered. The master equations used in Sections 
2 and 3 include chemical fluctuations only; the role of diffusion is neglected 
there. In Section 4, we discuss spatial correlations by including diffusion; the 
resulting multivariate master equation is analyzed by considering its behavior 
under scale transformations. The idea is to show that the classical exponent 
can be obtained by considering first a truncated equation for pair correla- 
tions. It is then shown that such a renormalization group technique can be 
extended to a simple one-dimensional reacting model. An approximate 
renormalization group is found for such a model which gives a classical 
exponent. The status of a Langevin description of spatial fluctuations is 
briefly discussed. 

In the final section, we discuss the applicability of these new develop- 
ments, and some aspects of the models under consideration. 

From the few model examples which we have examined by these tech- 
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niques, it seems that, for long-wavelength fluctuations, the qualitative con- 
clusions of "mean-field" type theories are preserved and no anomalous 
critical behavior is obtained. Recently, Nicolis and Turner (8) have solved the 
spatially homogeneous fluctuation problem for Schl6gl's model exactly; they 
also found that "classical" exponents describe the divergence of the second- 
order variance near the instability point. 

2. M A S T E R  E Q U A T I O N  D E S C R I P T I O N :  
" M E A N - F I E L D ' "  T H E O R E T I C A L  LEVEL 

In recent work by the Brussels group, (4'6~ the New Zealand group, (5~ and 
Haken (9~ a description of fluctuations in chemical systems based on a multi- 
variate master equation has been developed. The system is divided into 
spatial cells of length R, labeled l, 2 ..... n, whose size can be chosen to be of 
the order of the mean free path, and can under no condition approach molec- 
ular dimensions or exceed the correlation length. Let {x~} be the occupation 
numbers of cells i, and P({xi}, t) be the probability distribution of {x~} at time 
t. Define a generating function F({s~}, t) as 

F({&}, t) = ~ i-~ s~,P({xi}, t) (I) 
x l = O  1; 

The birth-and-death master equation takes the form 

~F + ~ d(s,+l + s,_l - 2 s 0 ~  (2) 0--/= -g7 ohom , 

The term (3F/3t)ohem describes the effect of chemical kinetics, and the 
second term describes the random exchange of  species X between neighboring 
cells due to diffusion. We have 

d = D / R  2 (3) 

with D the Fickian diffusion constant. 
Suppose X participates in a number of reactions whose order ranges 

from 0 to k. Then the macroscopic rate of evolution of  X would be of the 
form 

d n x / d t  = aknx k + ... + a ln~ + ao (4) 

where nx is the concentration of X; a~ < 0, or else the time evolution diverges 
[see (24) for an example]. 

If  (4) follows mass-action kinetics, the highest order term can only be 
the result of  

kX -+--. (5) 

On the other hand, from dimensional arguments and the local equilibrium 
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assumption, it follows that at least some of the lower order rate mechanisms 
should involve buffered chemicals A, whose number of particles is maintained 

f ixed and large within each cell i. This suggests that one could seek solution 
of Eq. (2) in the form 

F = exp[Aq~({s,}, t)] (6) 

The equation for the cumulant generating function r has a complex 
structure. Note, however, that each r-order derivative of F in (2) with respect 
to s--corresponding to a term nx r in (4)--gives rise, in the r representation, 
to a sum of terms of the form 

2 a'-% a~ , , 

8s~ -- '7 '  I~ Os,] (7) 

Dividing Eq. (2) by the highest power of A, one can initiate a perturbative- 
type solution in which all but the highest order term in A are neglected, to 
first approximation. We now show that in the presence of instability the 
zeroth-order term gives rise to a "  mean-field" type theory. To avoid cumber- 
some equations, we will discuss the case of a homogeneous system first, and 
delay the problem of spatial fluctuation to Section 4. Consider a homogeneous 
chemical system; Eq. (2) without diffusion can be written in terms of the 
cumulant function r as 

/c 

aCla.~ = ~, A,(s)(aClasy (8) 
r = O  

with T = tA k- 1. Here higher order terms in the small quantity 1/A have been 
neglected. 

At the steady state, Eq. (8) can be solved to yield r subject to the 
normalization condition 

r  1) = 0 (9) 

However, it is just as good to evaluate the variance of the fluctuation, which 
is related to (9%/0s2)~=1. Differentiating Eq. (8) with respect to s, one finds 

a2r rA,(s) = - ( 1 0 )  
as--~ ,=i ~ , = 0 - - - 9 7 - ~  \as! 

We now take the limit s --> 1, from (4) and (8); it follows that 

At(l) = ar/n~ -r, (0r = nx/na (11) 

On the other hand, the sum on the left of (10) is just the coefficient appearing 
in the linearized stability equation for (4). In the presence of an instability 
this coefficient vanishes at the "critical point." We conclude from (10) that 

(3x 2) - (x )  = (~2r --> oo (12) 
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since the right-hand side of (10) is, in general, different from zero. Thus, by 
limiting the equation for 4 to the highest order term in A, one always predicts 
a sharp transition at the macroscopic instability point. Following the work 
reported in Refs. 4 and 5, one can convince oneself that this conclusion 
remains valid in the presence of diffusion. 

We now evaluate the corresponding critical exponents. Rather than 
remaining general, we find it instructive to illustrate the analysis directly on 
three simple models. 

2.1. Mode l  A. A Tr imolecular  Mode l  

On the nonlinear chemical rate models exhibiting nontrivial critical 
behavior, the simplest type is the model considered by Schl6gl, (1~ 

kz k3 
A + 2 X  "3X, B .  "X  (13) 

k2 1~4 

The macroscopic rate equation is 

dnx/dt = - k l n x  a + k2nAn,fl -- k3nx + k4nB (14) 

and it may admit up to three positive steady-state solutions. 
For simplicity, let kl = 1, k2 = 3. At the critical point where k4CnB =n,fl 

and k3 c = 3hA 2, the three solutions coalesce to 

nx ~ = nA (15) 

The behavior in the vicinity of this point is described by two parameters 
8 and 3' defined by 

ka = (3 + 3)nA 2 (16) 

k4 = (1 + 8')nA3/ns (17) 

which play the same role that temperature and pressure deviation from the 
critical point play in equilibrium phase transitions. The elementary catastrophe 
one is dealing with in crossing the critical point is known as the cusp. (m 

The equation for the generating function is (neglecting the effect of 
diffusion) 

s2[d3F d2F'~ dF  
- 3A ds2,  I + (3 + 3)A2-~-ss - (I + ~')AaF = 0 (18) \as  3 

or, in the cumulant function representation, 

2[ 1 da4 3 d4d24 3 d24) 

l 

+ , 2 [ [ a 4 ~  3 - 3/d+]21 d4 
[ \ d s ]  \ d s ]  J + (3 + 8)~ss - (1 + 3') = 0 (19) 
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Neglecting terms containing 1/A and 1/A 2, we find an equation that 
allows explicit evaluation of q~ subject to the normalization condition 
~(s = 1) = 0. At s = 1 this equation becomes identical to the macroscopic 
rate equation at the steady state. Hence (dg~/ds)s=l is equal to nx/nA, i.e., 
at the critical point 

(d~/ds)~=~ = 1 (20) 

Let us now compute the variance by differentiating the A-independent 
part of (19). Setting s = 1, we recognize in the left-hand side the coefficient 
appearing in the linearized stability equation for nx. This coefficient, which 
is the analog of "isothermal compressibility" along the " i sochore"  8' = 0, 
vanishes as thefirst power of 8 as we approach the critical point. Hence 

d2q ~ I 1 4 
ds~ Is=~ = -A [<x2> - ( x ) ~  - <x>] = ~ (21) 

o r  

(<x 2> - <x>2)/A oc 4/8 (22) 

as 8 -+ 0, since <x>/A is always finite. The critical exponent defined in terms 
of  the parameter 3 -1 is + 1. The limit 3 --+ 0 from below is discussed in Ref. 8. 

We have considered macroscopic fluctuations to lowest order in the 
expansion parameter 1/A; if macroscopic fluctuations and microscopic 
fluctuations are well separated, it is reasonable to expect the above analysis 
to hold. A similar analysis based on a 1IV expansion, where V is the volume 
(an extensive quantity) of the system, has been carried out by Kubo et al. ~12~ 
and Van KampenC13>; their attention was focused on the distribution function 
instead of the generating function. 

Near a critical point, neglect of higher order terms in the 1/A expansion 
is not justified since the terms dropped become large also. Consideration of 
these higher terms will be presented in Section 3. For the model of this 
section, these terms involve up to triple derivatives of the function ~. Nicolis 
and Turner <a) have found an exact evaluation of the variance in the asymptotic 
limit. 

In order to make the mathematics simpler, we wish to consider some 
simplified models which involve quadratic rate laws only. These models are 
somewhat pathological, as explained in Section 5, but their consideration 
will be justified when we discuss them separately. 

2.2. Model B. Bimolecular Model  w i th  Two Steady States 

Consider the following sequence of reactions: 

2X + C kl >3X, X + A ~2>B, 2D ~3>X + D (23) 
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Fig. l. Stability diagram for model B, Section 2.2. (i) Asymptotically stable branch; 
(ii) asymptotically unstable branch. 

By setting k l C  = 1, kz = k3 = 1, the macroscopic rate equation yields 

dnx/dt  = nx 2 - nanx + n D  2 (24) 

and the steady-state solutions are 

nx ~ = [nA _+ (ha 2 - 4nD2)1/2]/2 (25) 

They are depicted in Fig. 1, where solid and dashed lines denote, respectively, 
asymptotically stable and unstable branches. Both branches disappear for 
nA < 2nD. Thus, the "critical point"  nA = 2rid is not an instability point that 
leads to bifurcation phenomenon. Rather, it corresponds to the simplest of 
elementary catastrophes ~11~ known as the fo ld .  

Strictly speaking, Eq. (23) is not a stable mechanism and model B is not 
a realistic chemical model; however, (24) can be viewed as a limiting case of  
model A where the cubic rate constant is very small, so that the upper stable 
branch is very far from the two branches considered here. This is typical in 
explosive reaction mechanisms. We wish now to investigate th~ fluctuations 
along branch (i) in Fig. 1 as the critical point is approached in this model. 

The master equation in terms of the generating function in the steady 
state is 

d2F  d F  
(s 3 + s 2)~s  2 + A ( I  - s ) - - ~  + D2(s - 1 ) r = 0  (26) 

In terms of the cumulant function representation, this becomes 

-~ s ~ + ~ds ] ~ + = 0  (27) 
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with h 2 = D 2 / A  2 = nD2/nA 2. Note  tha t  the " c r i t i c a l "  value of  h is hc = 1/2. 
Neglect ing,  as before,  terms conta in ing  1/A ,  we find 

s 2 ( d $ / d s )  2 - ( d 4 / d s )  + 2, = 0 (28) 

Again ,  we have 

( d2c~] 2(dc~/ds)~=l 
ds 2 ]~=1 = 1 - 2(d~/ds)s=~ (29) 

This  diverges as nA -+  2nD. The  divergence goes as (A - �89 The exponent  
1/2 should  no t  necessari ly be surpris ing here, as no obvious " o r d e r  p a r a m -  
e t e r "  seems to exist in this  model .  Thus,  we do no t  know what  t h e "  c lass ica l"  
exponent  should  be. 

2.3. M o d e l  C. B imolecu lar  M o d e l  w i t h  One Trivial  S ta te  

Consider  ano ther  quadra t i c  rate  model ,  ~s) 

kl k 2 
A + X .  " 2 X ,  B + X  .... > C  (30) 

kz 

The macroscop ic  equa t ion  o f  evolu t ion  (lett ing k_ 1 = kx = k2 = 1) 

dnx /d t  = (nA --  rr~ --  nx )nx  (31) 

gives two s teady-state  solut ions 

n~ 1) = O, n~ ) = na - ns (32) 

n x l  

(ii) 

' '  > 

hA- n8 

Fig. 2. Stability diagram for model C, Section 2.3. (i) Trivial branch; (ii) branch con- 
sidered in the text. 
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At nA = n8 the system undergoes a "second-order" transition depicted 
in Fig. 2. 

In the cumulant function representation, the master equation gives 

sA 2 + SA ~s 2 + (B - A s ) A  ~ = 0 (33) 

Dividing through by A 2 and neglecting terms containing 1/A, we find 

I, ds ] + - s ~-s = 0 (34) 

To evaluate the variance, we differentiate once more, 

( d~ B )d2f f  ( d q ~ 2 +  dff (35) 
2 s N  + - s ?-fi = - \  ds] N 

with 
(d~/ds).=i = (nA - nB)/nA (36) 

The variance of the fluctuation can be evaluated as 

( 3 x  z) - ( x )  = (d24~] = n~ (37) 
A \d s2] .= l  na 

This is finite at the instability point, contrary to (12), even though ~x) = 
A(dc~/ds)s =1 -+ 0. But 

lim [(8x2)'11'2 n~ 1 = ~ ~ (38) 

That is, the relative fluctuations does diverge, like (hA -- nB)-1. 

3. C O R R E C T I O N S  TO THE " M E A N - F I E L D "  T H E O R Y  

V I E W E D  AS A P R O B L E M  OF S I N G U L A R  P E R T U R B A T I O N  

We want now to assess the validity of neglecting higher order terms in 
I/A in the limit A ~ oe (macroscopic limit). As we have seen in the preceding 
section, these terms multiply higher derivatives of the function ~. Thus, we 
have a singular perturbation problem, ~1~ whose zeroth approximation to the 
outer solution is provided by such equations as (21), (28), and (34). 

One of the principal features of a singular perturbation is the occurrence 
of a boundary layer. In order to examine the possible formation of such layers 
in the problem under consideration, we must specify the boundary conditions 
for the function F or 4,. Although s varies in the interval ( -  1, 1), we choose 
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to work in the interval (0, 1). One boundary condition is due to the normal- 
ization condition for the distribution function 

F(s = 1) = 1 or r = 1) = 0 (39) 

This condition can always be satisfied by the outer solution in the previous 
section. 

In setting up the boundary condition at s = 0, we observe that, f rom the 
definition (1), it follows that  

dF 
F(s = 0) = P(0), ~ -  (s = 0) = P(1) (40) 

Now the values of  P(0) and P(1) are between 0 and 1 and, more typically, 
vanishingly small as A -+ ~ .  Hence 

dF 
0 <~ F(0) ~< 1, 0 ~< ~ - ( 0 )  ~< 1 (41) 

or in terms of the cumulant function r we have 

de 1 P(1) (42) 
r < 0, ~-~ (0) = A P(0) 

Usually, the ratio P(1)/P(0) can be computed explicitly from the kinetic 
scheme. For  instance for the model B considered in Section 2, we have 

dP(O)/dt = AP(1) - D2P(O) (43) 
and 

P(1)/P(O) = D2/A (44) 

Now, since the outer (mean-field theoretical) approximate solution is 
derived from an equation of first order in s, it will in general not obey condi- 
tions (41) or (42). Thus, we expect the formation of a boundary layer near 
s = 0 and the outer solution becomes unsatisfactory there. On the other hand, 
no boundary layer is expected to arise in the vicinity o f  s = 1.3 All physical 
quantities pertaining to the behavior of fluctuations are computed from r 
and its derivatives at s = 1. Hence, we expect the outer solution to make sense 
even within the framework of singular perturbation, at least under certain 
conditions. 

We now proceed to derive these conditions. Setting �9 = l/A, one may 
always transform the equation for r into a system Of first-order equations 
of  the form 

�9 du/ds = f (s ,  u, �9 (45) 

where both u and f a r e  r-dimensional vectors if r is the highest order derivative 
appearing in the equation for r 

3 On inspecting Eqs. (17) and (26) for F we may also remark that s = 0 is an irregular 
singular point, whereas s = 1 is a regular (nonsingular) point. 
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The outer solution Wo is given by 

Setting 

we transform Eq. (45) to 

with 

f ( s ,  Wo, 0) = 0 (46) 

u(s) = v(s) + Wo(S) (47) 

, dv/ds = g(s,  v, ~) (48) 

g(s,  0, 0) = 0 (49) 

Hence, Eq. (48) can be written in the form 

, dv/ds = ,a(s) + Ao(s)v + h(s, v, E) (50) 

where the function h contains at least quadratic powers of v and e. 
Now we make the following assumption. 

Assumption. Ao can be diagonalized and has nonzero eigenvalues 
for Is l <<. So. 

Note that at s = 1, Ao becomes identical to the coefficient appearing in 
the linear stability analysis of the macroscopic rate equations. Hence if we 
remain below the instability point, det[A0(1)] will never vanish. 

Under this assumption one can prove that (14'1s~ Eq. (50) admits solution 
of the form 

v = ~ ,'v,(s) (51) 
i = 1  

where the v~(s) are holornorphic. Moreover, as e---> 0, (51) is the uniform 
asymptotic expansion of some function holomorphic in s and ~ for s ~< so, 
0 < e ~< %, and the asymptotic expression can be differentiated termwise. 

In conclusion, we have shown that if we remain off the critical point 
(although still in its neighborhood), the outer solution computed in Section 
2 is a sound approximation to the behavior near s = 1. In particular the law 
of divergence of the variance and the values of  the critical exponents will 
remain unaffected. The analysis of the inner solution, as well as the direct 
asymptotic evaluation of the steady-state solution in the case of  SchlSgl's 
model by Nicolis and Turner, es~ confirm these conclusions. Again, these 
arguments are not likely to be influenced by diffusion, which only intervenes 
in the outer expansion, provided the limit A --+ oo can be taken within each 
spatial cell. This limit, however, may well be unrealistic. 

We wish to illustrate the above arguments by explicitly considering the 
bimolecular model B of Section 2. We start from (27), setting 

d e n s  = u(s) (52) 



30 C.Y.  Mou,  G. Nicolis, and R. M. Mazo 

Then,  

du I A 2 
, ~  + u  2 ~ u + p = 0  (53) 

The  outer  solution is given by 

wo = (1/2s2)[1 - (I - 4A2s2) 1/2] (54) 

where the negative sign has been chosen to keep wo finite at s = 0 [see Eq. 
(42)]. 

With Eqs. (47) and (48), we have 

d r (  1 ) v  dwo "-A + 2Wo - ~ + v2 + "--A- = 0 (55) 

The coefficient of  v is 

Ao(s) = - ( I / s2 ) (1  - 4A2s2) ~/2 (56) 

Since s ~< 1, Ao(s) remains different f rom zero as long as 2A < 1. 
Looking back at Section 2.2, we see that  this inequality implies that  we are 
not  in the immediate vicinity of  the "c r i t i ca l "  point. This ensures the applic- 
ability of  the Wasow theorem, ~15) and at the same time, the validity of  the 
outer  expansion. 

Now, with the expansion of  (51), one can easily work out  the first-order 
cor rec t ion  to the outer  solution; substituting Eq. (51) into Eq. (55) and 
collecting powers of  ~, one has 

( 1 )  dwo s2dw~ (57) 
2 w o - ~  vl + T s  = 0  or vl = 1 - 2 s 2 w o  

To  first order we have 

dgp/ds ,~ (1/2s2)[1 - (1 -:- 4A~s2) ~/2] + vl ,  (58) 

Then  

d26 dwo dr1 (1 - 4A2s2) lj2 - 1 8A2s dr1 (59) 
ds 2 = T s  + c--~- = sZ + 4s2( 1 _ 42,as2)1/2 + E--d-j- s 

As A-+ �89 both  dwo/ds and dvl/ds terms diverge as s = 1. But the 
impor tan t  point  is that  c dvl/ds in (59) is much smaller than dwo/ds for  the 
region A = 1/2 + -q, where ~7, al though small, is large compared to E = I/A. 
Tha t  is, we wish to consider a critical region A = 1/2 + ~/ where -,/ is still 
large compared  to microscopic deviations of  order 1/Avogadro's  number.  
Then  

as 2 ]~=~ ;7-/0> ~/----~ (60) 
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In other words, the outer (" mean-field" theoretical) solution dominates 
the divergent behavior near the critical point as long as we are not in the 
immediate critical region, where the ,~ parameter cannot be well defined 
anyway since microscopic fluctuations of A become important there. The 
behavior of fluctuations at  the critical point was recently investigated by 
Van Kampen a3~ and Nicolis and Turner. ~s) 

4. SPATIAL C O R R E L A T I O N S  

In the previous sections, we have investigated fluctuations of extensive 
quantities in a homogeneous chemical system near an instability point. The 
effect of diffusion was neglected. In this section, we will consider the coupling 
between diffusion and nonlinear kinetics; its effect is known to lead to long- 
range correlations ~3,4) analogous to the well-known Ornstein=Zernike theory 
of correlation in equilibrium phase transitions. ~16~ In common with previous 
work, ~a-5~ a linearization procedure, similar to the mean-field-theoretical 
method discussed in Section 2, can be used. The correlation length ~ is found 
to vary as (A - Ac) -112 with classical exponent v = 1/2. This is not surprising 
in view of the parallel result, (Sx 2) ~ (A - Ac) -1, in a homogeneous system. 
Our starting point is the full stochastic equation (2). 

For technical reasons, we limit ourselves to the investigation of slowly 
varying spatial fluctuations in the "hydrodynamic"  range. We expect these 
to be the important ones when the rate of diffusion is much faster than that 
of the chemical reactions present. Although this approximation is equivalent 
to hitherto used truncation procedures, our principal goal is to show that 
it is possible to set up an analysis of spatial fluctuations which follows closely 
the modern theories of critical phenomena set forth by Kadanoff r and 
Wilson.~8) 

The basic idea is to consider scale transformations of the basic master 
equation (2) for a multicell system in the manner of the Kadanoff construc- 
tion. ~lv) If  long-range correlations do exist, they can be found by looking at 
the way in which the bifurcation parameter (or instability parameter) is 
transformed in scaling. The concept of fixed point in such a transform will be 
related to the underlying instability point. In working with the cell block 
approach, our approach will be similar to the renormalization group theory 
of the Ising model used by Nauenberg. (~9~ 

For the sake of simplicity, we will consider the simplest multivariate 
nonlinear reaction-diffusion model. Let us look at the chemical model C of 
Section 2.3 in a quasi-one-dimensional system. (Consider the reaction in a 
very long and narrow cylinder, for example.) Divide the system into small 
cell blocks of length R; R should be of the order of the mean free path 
between X-X reactive collisions. We will allow a birth-and-death stochastic 
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description in each cell for  chemical reactions and r a n d o m  exchange of  X 
between nearest  neighbor  cells only. In  terms of  the mult ivariate generating 
funct ion F ( s l ,  s2, . . .)  the master  equat ion will be 

OF 
2s,) (A + B)s,l ~ss~ 0--[ = [As~= + B + d(s~+~ + s~_~ 

z" 02F') 
+ - s, g-s?  (61) 

with d = D/R2;  D is the Fickian diffusion constant  for  the species X. The  
last te rm in (61) is due to the nonlinear  step of  the mechanism 2X ~ X + A. 
In  (61), ~ is its rate constant.  We do not  now take ~- = 1 as before. 

In  terms of  

a = A /d ,  b = B/d,  , = ~/d, r = td 

the master  equat ion can be written as 

[ast 2 + b + (s~+l + s i -1  - 2s,) - (a + b)s~]-d-~ 

d F\ 
+ ,(s, - si s) ds2 j = 0 (62) 

in a steady-state system. 
The pair  correlat ion (x~,xj) will be determined by the second derivative 

(O2F/Os~ ~sj),, = 1.,j= 1. F r o m  Eq. (62) this quanti ty will be related to (x~x jx~) ,  
and an infinite hierarchy of  equations relating each m o m e n t  to the next higher 
order one can be writ ten down,  in general. 

In  order  to simplify notat ion,  let us fix one of  the x,, say x0, to be a 
constant  nonfluctuat ing value N. Then the correlat ion (XoX~) = ( x~ )N .  F r o m  
Eq. (62) one has 

~(x~ 2 - x~) + (2 - l)(x~} = (x~+l)  + (x~- l ) ,  l = a - b (63) 

I f  we neglect the nonlinear  term (e term),  all moments  become decoupled;  in 
part icular  we have 

(2 - l ) (x~)  = (x~+l)  - ( x , - 1 )  (64) 

The  next step is to consider a superlattice by averaging over every other 
cell. Equat ion  (64) can be writ ten as 

[(2 - 02 - 2](x , )  = (x ,+2)  + (x ,_z )  (65) 

Consider  the i - 2, i, and i + 2 cells as neighboring cells with length 2R. 
I f  one writes Eq. (65) as 

(2 -- l ' ) ( x , ' )  = (x~+l)  + (x~_l)  (66) 



Nonequilibrium Phase Transitions in Chemical Systems 33 

it has the same form [Eq. (64)] as before. One has the parameter  l t ransformed 
a s  

l '  = 4l - l 2 (67) 

This t ransformat ion has two fixed points at/1 = 0 and 12 = 3; the slope 
o f  the t ransform is 

p dl' - - 4  > 1, A2 = = - 2  < 1 (68) 

Hence l = 0 is a critical point  (na - nB = 0). 
The critical exponent v for correlation length ~: can be easily determined 

a s  

v = In 2/ln ,~ = 1/2 (69) 

a classical result! 
Hence, by looking at the scale t ransform behavior o f  the parameter  t, 

one can investigate critical behavior without  actually solving the multivariate 
stochastic equation. 

N o w  we want  to see whether such a model  can be applied to the nonlinear 
problem in a less trivial way. Consider the complete equation (63), which can 
be written as 

(2 - l)E(x~ = - xi> + [(2 - l) 2 - 2](x,)  
= < x i + = >  + ( x , _ ~ >  - ~[ (x ,=+l  - x,+~) + ( x L ~  - x ~ - l > ]  ( 7 0 )  

The idea is again to try to write this equation in the form of  

~'(x~ = - x~') + (2 - l')(xi'> ,~ (x;+a> + (x[- l> (71) 

in the same form as the original equation except for an enlarged scale. In 
general, one would have 

, '  = f ( , ,  l), I '  = g(, ,  l) (72) 

and similar procedures to find fixed points and critical exponents can be used. 
Here we want  to illustrate this me thod  on a special situation. 

Consider the situation where the diffusion rate in and out o f  each cell 
is much  larger than the quadratic rate o f  X, e.g., 

d >> g (73) 

Then E = ~-/dcan be considered as a small parameter.  In this case, higher order 
correlations are dominated by diffusion and the linear rate law; one has 

2(2 - l)(xtx,+,~) = (x,x,+,,_l) + (x,xi+,~+l) + (x ,+,x,+l)  + (x,+,,x,_l) + 0 (e) 
(74) 
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and 

a 
1 (x,+lx, + x~_ix~) + -5-s + 0(r (75) ( x, 2 - x i )  = 2 _  l 

Substitute (74) and (75) into Eq. (70); after some manipulation of 
equations, one has 

[p 2 +  O(,)] 2 [S (2 - l')2 O(e)](x,) 
] < x ,  - x,> + + e-----0- + 

[ s ] 
= 1 + ~ + O(e) ((x,+2) - (x,-2)) + ~ ((x~+4 - x,+,) 

+ ( x L ,  - x,_,))  (76) 

(2 [1 - 1/2(2 - 0 2] 

with 

P = 2 - l +  [1 + - -  

Q = 2 ( 2 -  l) 2 -  1 

(77a) 

(77b) 

S = ( 2 -  0 2 - 2  (77c) 

Now this equation is not quite the form we would like, due to the extra 

2 -  l '  P Q S  + ( 2 -  1') z 
= P Q  + S + 0(,)  (79) 

One can irnmedjately see that ~ -- 0 satisfies the fixed-point condition. 
For l, Eq. (79) is a complicated nonlinear transformation. Nonetheless, one 
can show by direct substitution that l = 0 again satisfies the fixed-point 
condition. To assess the behavior near the fixed point I = 0, we compute 

(dl'/dl),=o = 4 (80) 

Therefore the correlation length behaves as 

~: oc (1 - It) -1/2 = 1-1/2 = (na - nB)-l( 2 (81) 

group for the scaling transform, that is, 

~" = [P - 2 / P O  2 + O(,)]/[1 + s / P a  + o(,)] 
and 

(78) 

next-nearest-neighbor terms. The importance of these extra terms may depend 
on the dimensionality of the problem in hand. A "critical dimensionality" 
argument for neglecting these higher neighbor terms would be highly desirable 
here. In this paper, we will simply adopt the usual assumption made in the 
Kadanoff construction for the Ising model; we neglect all higher neighbor 
terms after each iteration. We will have an approximate renormalization 
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We have thus recovered the classical result again in a nontrivial way. 
This result is a direct consequence of the decoupling scheme of Eqs. (74) and 
(75), which, in turn, is motivated by the approximation (73) that diffusion 
dominates higher correlations. Similar conclusions have been reached by 
Gardiner et al. (5~ in a Gaussian-like approximation for triplet correlations 
by more traditional methods. We wish to argue here that the condition d >> g 
is realizable in some actual situations. Consider a dilute gas of X, the 
diffusion constant is D ~ ~ ,  where h is the mean free path and ~ is the mean 
molecular speed. Then d = D/h 2 = ~/A = 1/mean time between collisions, 
where the quadratic constant ~- should be 

probability of effective reaction = __p 
mean time between collisions r 

In case of high activation energy for the reaction, p << 1. Then one would 
indeed have d >> ~. 

The cell-block scaling method presented in this section has only been 
applied to the simple one-dimensional reaction-diffusion model; we have 
shown that the classical exponent can be obtained in a very easy way. As 
in similar problems for the Ising model, (2~ extensions to higher dimensions 
become very complicated. Nonetheless, the problem is well-posed. More work 
is needed for more realistic models in three dimensions. 

Another method using the renormalization group approach can be based 
on the so-called Langevin equation approach. (3~ We will just make a few 
comments on this approach here. For a one-component reaction-diffusion 
system, the following Langevin equation was proposed by Nitzan et al,(3~: 

~x  ~(I,(X, ~) 
~---~ = - ~X + V V2X + f(r ,  t) (82) 

On the right-hand side of this equation the first term represents the chemical 
rate and the second term is the normal diffusion. For the random term 
f( r ,  t) one has 

( f ( r ,  t)f(r ' ,  t ' ) )  = 2 0  3(r - r') 3(t - t ') (83) 

Under this condition, (82) can be solved by considering the probability 
distribution P(X, t) as a solution o f a  Fokker-Planck equation. (21~ The steady- 
state solution is 

P ( X ) ~  e x p ( - f  dr [r + �89 (84) 

This is very much like a Landau-Ginzburg model.for equilibrium phase 
transitions. Hence the renormalization group technique developed by Wilson 
can be applied to this problem in a straightforward way (the critical dimen- 
sionality in the case of cubic nonlinearities would then be expected to be 4). 
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In a one-dimensional case, this has been done by Scalapino et aL, ~22) who 
show that no sharp transition occurs. This is in contrast to the result obtained 
in this section by the master equation approach. Recently Grossman ~23~ and 
Gardiner ~2~) have argued that the random force (83) is not consistent with 
the basic equations of conservation for a flow system. Alternative expressions 
for the random force have been proposed by Grossman, ~2s~ Gardiner, ~2~) and 
Keizer. ~7) These have not yet been applied to the problem of critical spatial 
correlations. 

5. D I S C U S S I O N  

In conclusion, we have presented some techniques for treating nonlinear 
fluctuations for reaction-diffusion systems described by master equations. 
We have shown that a singular perturbation method can be formulated based 
on a 1/.4 expansion of the cumulant function. Such an expansion is similar 
to the 1/V expansion applied to the distribution function by Kubo et al. ~12~ 
and Van Kampen. ~13~ One would expect a time-dependent theory could also 
be developed for dynamic fluctuations. At present, our attention has only 
focused on the macroscopic fluctuations of steady states. 

For spatial correlations, we explore the renormalization group approach 
based on cell scaling. The method has led to an interesting result near the 
critical point. It is not clear at present how to extend this technique to more 
complicated systems and higher dimensions. However, the basic idea of 
scaling transformation should apply, providing long-range correlations are 
developed. This has been shown in Section 4 with a highly simplified model. 

We have been using very simple models in discussing these techniques. 
In fact two of the models are so simple that there are some trivialities associ- 
ated with them; a few words should be said about them here. 

For model C, the exact steady-state solution is known; it is 

F(s)  = 1 (85a) 
o r  

P(x)  = 3x,o (85b) 

and this is not the approximate solution we considered for the nontrivial 
branch (nx = na - nB). So how can an equation like (37) make sense ? There 
are Several ways out of this. Keizer (25~ has suggested that the asymptotic limit 
of the master equation (in system size) is the important quantity, and that 
this limit must be taken before the t --+ ~ limit. The t -+ oo limit corresponds 
to the approach to the steady state. From recent work of Kubo et al. ~~ the 
time for approaching the steady state is oce ~, where N is proportional to the 
size of the system. In this limit, the extinction of X does not arise for an 
extended period of time. So although our approximate solution is not on 
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the same branch as the exact solution (85b), it will take a very long time to 
approach (85b). The system will practically stay forever on this nontrivial 
branch. Alternatively, one can note that by changing just one single transition 
probability, that for x = 0 - +  x = 1, we will generate a model with a 
probability not concentrated on x = 0. The state x = 0 is no longer an 
absorbing state. Of  course, this amounts to changing the model. We believe 
the change is not unreasonable. 

In fact, for a master equation of the form 

OP 
~--7 = t + ( x  - 1)P(x - 1, t)  + t - ( x  + 1)P(x + 1, t) - [t+(x) + t - ( x ) ] P ( x ,  t )  

(86) 
the steady-state solution is given by 

ess(x) = Pss(o) 1-~ t 1) j=l ())  (87) 

as may be readily verified by substitution, t +(0) = 0 for the mechanism given 
by (30). But if we set t + (0) = fl # 0, then 

ax-1 
P . ( x )  = e ~ ( O ) # ( B  - 1)! x ( B  - x + 1)! (88) 

This distribution has a maximum at x = A - B, which is what one would 
expect from the macroscopic rate law. As long as A - B is not near zero, the 
distribution is rather narrow. We believe that it is this distribution that we 
are studying by our approximate methods. 

Model B, Eq. (23), is also somewhat pathological if  interpreted literally. 
In this case, the cause of the peculiarity of  the generating function equation 
lies, not in extinction, but in explosion, because there is nothing in the 
mechanism (23) to counteract the autocatalytic growth. So the steady state 
cannot be truly steady under fluctuations. Of  course, one would expect, again 
physically, that the reverse reaction of the first step in (23), neglected there, 
should become important  if  X becomes significantly large. In this case the 
model can be considered as a limiting case of  model A where the upper 
branch is very far from the two steady-state branches considered. In a very 
large system, the time necessary for such very large-scale fluctuation can be 
very long. 

For model B, Eq. (87) takes the form 

1-~ ( j  - 1 ) ( j -  2) + D ~ 
P ~ ( x )  p~s(o) 7=1 A j  (89) 

which grows like x ! / A  x for x ---> oo. This is not normalizable. But note that 
P ( x )  has a sharp maximum at a value o f x  given by the macroscopic equation 
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(25). We  believe tha t  our  app rox ima te  methods  describe the behavior  of  a 
system in which  the eventual  large-x  divergence is suppressed by  some 
mechanism,  bu t  which is descr ibed by (89) near  the max imum.  

So mode l  B can be considered again  valid i n  an asymptotic sense in 
Sections 2 and 3. 
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